\( (x^n)' = n x^{n-1} \), pour \( n \neq -1 \)
\( (e^x)' = e^x \)
\( (\ln(x))' = \frac{1}{x} \)
\( (\cos(x))' = -\sin(x) \)
\( (\sin(x))' = \cos(x) \)
\( (u \cdot v)' = u' v + u v' \)
\( \left( \frac{u}{v} \right)' = \frac{u' v - u v'}{v^2} \)
\( (u \circ v)'(x) = u'(v(x)) \cdot v'(x) \)